Monica Jhoselin Parraguirre Rosas
COBAEP- Plante-21
Trabajo:La tortuga de Aquiles
LA PARADOJA DE ZENÓN
(Aquiles y la tortuga)
Según la leyenda,
Aquiles, héroe de la Guerra de Troya, era invulnerable, debido a que su madre,
para hacerle invencible lo llevó a la laguna Estigia, morada de Medusa, y lo
sumergió en sus aguas sujeto por el talón. Como su talón fue lo único que no se
mojó, éste era su único punto débil... el Talón de Aquiles.
Famoso por sus
grandes cualidades físicas, Aquiles fue elegido por Zenón de Elea (490 a.C. -
430 a.C.) como protagonista de la famosa Paradoja (cuyo
enunciado hemos adaptado para facilitar la solución):
Aquiles, el atleta más veloz, capaz de correr los
100 m. en 10 segundos, no podrá alcanzar a una lenta tortuga, diez veces menos
rápida que él. Ambos disputan una carrera, concediendo Aquiles una ventaja de
100 m. a la tortuga. Cuando Aquiles ha cubierto esos 100 m., la tortuga se ha
desplazado 10 m. Al cubrir Aquiles esos 10 m., la tortuga se ha desplazado 1 m.
Mientras cubre ese metro que le separa de la tortuga, ésta ha recorrido 0'1 m.
Y así indefinidamente.
Así, Aquiles debe cubrir infinitos trayectos para
alcanzar a la tortuga. Por lo tanto, Aquiles deberá cubrir una distancia
infinita, para lo cual necesitará un tiempo infinito. De tal manera que el
desgraciado Aquiles nunca alcanzará a la tortuga.
Es evidente que esta
paradoja, bajo una apariencia de razonamiento correcto, esconde algún fallo...
todos sabemos que Aquiles debe alcanzar a la tortuga. Pero se tardó 24 siglos
en desvelar por completo, gracias a la Teoría de Límites, cuál era el fallo: la
suposición de que infinitos trayectos deben sumar una distancia infinita y
necesitan un tiempo infinito no es correcta.
Lo aclararemos estudiando como sucesiones las
distancias recorridas, la ventaja de la tortuga y los tiempos empleados:
Posición de
Aquiles (m.)
Posición de
la tortuga (m.)
Ventaja
de la
tortuga
(m.)
Tiempo empleado
(seg.)
Salida
1ª etapa
2ª etapa
3ª etapa
4ª etapa
...
Límites
0
100
100 + 10 = 110
100 + 10 + 1 = 111
100 + 10 + 1 + 0,1 = 111,1
...
111,111...
100
100 + 10 = 110
100 + 10 + 1 = 111
100 + 10 + 1 + 0,1 = 111,1
100 + 10 + 1 + 0,1 + 0,01 = 111,11
...
111,111...
100
10
1
0,1
0,01
...
0
0
10
10 + 1 = 11
10 + 1 + 0,1 = 11,1
10 + 1 + 0,1 + 0,01 = 11,11
...
11,111...
En consecuencia: Aquiles alcanza a la tortuga a los
111,111... m de carrera y emplea en ello 11,111...
segundos (números decimales periódicos puros).
Otro ejemplo.- Si todavía te cuesta
admitir que la suma de infinitos números puede ser un número finito, piensa en
una hoja de papel (1). Le quitamos la mitad (1/2). A su vez, a la mitad
restante le quitamos su mitad (1/4). Al trozo que queda (1/4), también le quitamos
su mitad (1/8). Y así sucesivamente, de forma indefinida. Como siempre queda
algo de papel, siempre se puede continuar cortando.
Piensa ahora en la
suma de los infinitos trozos de papel que vamos quitando:
1 / 2 , 1 / 4 , 1/8 , 1/16
, 1/ 32 ...
¿Cuál es su suma?
¡Evidentemente
toda la hoja; es decir 1!
1 / 2 + 1 / 4 +1 / 8 + 1 / 16 + 1 / 32 ... =
1
Ambos casos son
ejemplos concretos de la Suma de todos los términos de una progresión
geométrica con razón r ( | r | < 1).
Dada una progresión
geométrica: a
, a·r , a·r2 , a·r3
, a·r4 ... a·rn
La suma de los (n + 1) primeros términos: S = a + a·r + a·r2 + a·r3 + a·r4 + ...+ a·rn
Se expresa mediante
la fórmula:
Cuando | r | < 1 , la potencia rn+ 1 resulta ser un
infinitésimo; es decir, para valores de n cada vez mayores, su límite es 0 .
lim rn+ 1=0
cuando n à 4
En consecuencia, se
puede calcular la suma de los infinitos términos de la progresión:
S 4 = lim S = a / (1 – r) cuando n à 4
Ejemplos.-
En
la paradoja de Zenón: a =
100 , r =
1/10
Aquiles
alcanza a la tortuga después de recorrer: S 4 = 100 / (1 – 1/10) = 111,111... m
Al
partir la hoja de papel: a =
½ , r =
½
Todos
los trozos suman: S 4 = ½ / (1 – ½ ) =
1
Posición de
Aquiles (m.)
Posición de
la tortuga (m.)
Ventaja
de la
tortuga
(m.)
Tiempo empleado
(seg.)
Salida
1ª etapa
2ª etapa
3ª etapa
4ª etapa
...
Límites
0
100
100 + 10 = 110
100 + 10 + 1 = 111
100 + 10 + 1 + 0,1 = 111,1
...
111,111...
100
100 + 10 = 110
100 + 10 + 1 = 111
100 + 10 + 1 + 0,1 = 111,1
100 + 10 + 1 + 0,1 + 0,01 = 111,11
...
111,111...
100
10
1
0,1
0,01
...
0
0
10
10 + 1 = 11
10 + 1 + 0,1 = 11,1
10 + 1 + 0,1 + 0,01 = 11,11
...
11,111...
No hay comentarios:
Publicar un comentario